用GARCH模型计算波动率的具体步骤是怎样的?特别是...
一般做garch的都是用原始数据,就是上证指数做变换后的数据。。波动率有很多种求法,garch就是其中一种。如果用你的思路和给出的波动率和收益,garch就是arma的方法求波动率。
那就是以波动率平方为因变量,滞后的波动率平方(有的不同阶数可能,用统计量筛选),滞后的收益平方为自变量做回归。
如何用eviews进行GARCH模型测股票波动性,要具体步骤
Eviews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包。它的本意是对社会经济关系与经济活动的数量规律,采用计量经济学方法与技术进行“观察”。另外Eviews也是美国QMS公司研制的在Windows下专门从事数据分析、回归分析和预测的工具。使用Eviews可以迅速地从数据中寻找出统计关系,并用得到的关系去预测数据的未来值。Eviews的应用范围包括:科学实验数据分析与评估、金融分析、宏观经济预测、仿真、销售预测和成本分析等。
GARCH模型是一个专门针对金融数据所量体订做的回归模型,除去和普通回归模型相同的之处,GARCH对误差的方差进行了进一步的建模。特别适用于波动性的分析和预测,这样的分析对投资者的决策能起到非常重要的指导性作用,其意义很多时候超过了对数值本身的分析和预测。
一般的GARCH模型可以表示为:
Y(t)=h(t)^1/2*a(t) ⑴
h(t)=h(t-1)+a(t-1)^2 ⑵
其中ht为条件方差,at为独立同分布的随机变量,ht与at互相独立,at为标准正态分布。⑴式称为条件均值方程;⑵式称为条件方差方程,说明时间序列条件方差的变化特征。为了适应收益率序列经验分布的尖峰厚尾特征,也可假设 服从其他分布,如Bollerslev (1987)假设收益率服从广义t-分布,Nelson(1991)提出的EGARCH模型采用了GED分布等。另外,许多实证研究表明收益率分布不但存在尖峰厚尾特性,而且收益率残差对收益率的影响还存在非对称性。当市场受到负冲击时,股价下跌,收益率的条件方差扩大,导致股价和收益率的波动性更大;反之,股价上升时,波动性减小。股价下跌导致公司的股票价值下降,如果假设公司债务不变,则公司的财务杠杆上升,持有股票的风险提高。因此负冲击对条件方差的这种影响又被称作杠杆效应。由于GARCH模型中,正的和负的冲击对条件方差的影响是对称的,因此GARCH模型不能刻画收益率条件方差波动的非对称性。
GARCH模型的参数估计方法有哪些
一般都是用的极大似然估计,这用eviews可以直接做,matlab也可以。还有些论文提出了MCMC来做,你可以到网上搜搜看看。
全部评论